Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
PLoS One ; 19(4): e0299688, 2024.
Article in English | MEDLINE | ID: mdl-38635645

ABSTRACT

With the world population growth, energy consumption and the rapid development of industrial economy, a large amount of carbon emissions has brought destruction and threats to the earth's environment on which human beings depend. The development of low-carbon economy has become the consensus of governments all over the world and has been vigorously advocated & promoted. This paper focuses on the top five global GDP nations in 2022: The United States, China, Japan, Germany, and Britain. A comprehensive evaluation index system of urban low-carbon economic development level is constructed from four dimensions: economic development level, environmental quality, energy consumption emission intensity and social development speed by using literature review and field interview. The evaluation measures are determined using the TOPSIS evaluation method with entropy weight and the grey relational model, providing a comprehensive assessment of the low-carbon economy's development level in these five countries." Judging from the comprehensive evaluation score, the overall development of low-carbon economy in American cities is in good condition and has reached the development standard of low-carbon economy; Germany and Japan rank second and third, and they are low-carbon economies. Britain ranks fourth in comprehensive evaluation, although it belongs to a low-carbon economy country, but there is still a certain gap with Germany and Japan; There is still a big gap between China and the other four countries. Based on the measurement and evaluation outcomes, it presents recommendations and strategies to foster the growth of low-carbon economies, offering valuable insights for the advancement of such economies across different nations. The research results guide countries all over the world to reduce carbon emissions in the process of economic development, protect the earth environment on which human beings depend, and make a better tomorrow for sustainable development.


Subject(s)
Carbon , Economic Development , Humans , China , Cities , Consensus , Carbon Dioxide
2.
Article in English | MEDLINE | ID: mdl-38669118

ABSTRACT

Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.

3.
Chem Commun (Camb) ; 60(37): 4926-4929, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38629227

ABSTRACT

A turn-on fluorescence aptasensing approach for the highly sensitive and selective determination of 5-HT was proposed via target-induced knot displacement. 5-HT can be determined in a range from 0.5 nM to 100 nM with a limit of detection as low as 0.1 nM and a low dissociation constant of 2.3 nM.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes , Serotonin , Spectrometry, Fluorescence , Aptamers, Nucleotide/chemistry , Serotonin/analysis , Serotonin/chemistry , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Limit of Detection , Humans , Fluorescence
4.
Phytochemistry ; 222: 114090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599509

ABSTRACT

In this study, ten phenylpropionyl phenylethylamines, including five previously undescribed ones (1a/b, 2a/b, and 3), five known analogues (4-8), and two established phenylpropanoids precursors (9, 10) were isolated from the aerial parts of Chloranthus henryi Hemsl. Their structures, including absolute configurations, were determined by high-resolution mass spectrometry, enantio-separation, electronic circular dichroism calculation, and single crystal diffraction. Compounds 1a and 1b were the first examples of natural hetero-[2 + 2] cycloaddition products between phenylpropionyl phenylethylamine and phenylpropene. The plausible hetero-[2 + 2] biosynthesis pathway was confirmed by a photocatalytic biomimetic synthesis in eight steps, which also led to the production of three other potential natural homo-[2 + 2] adducts (1'a/b, 2', and 3'). Bioactivity screening indicated that these adducts bear medium inhibitory activity on nitric oxide generation, with IC50 values of 6-35 µM in RAW 264.7 macrophages.


Subject(s)
Nitric Oxide , Phenethylamines , Mice , Animals , RAW 264.7 Cells , Phenethylamines/chemistry , Phenethylamines/isolation & purification , Phenethylamines/pharmacology , Phenethylamines/chemical synthesis , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Molecular Structure , Amaryllidaceae/chemistry , Biomimetics , Dose-Response Relationship, Drug , Structure-Activity Relationship
5.
Phys Chem Chem Phys ; 26(15): 12150-12161, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587789

ABSTRACT

The present paper investigates one of the hydrazone derivatives (BTH with a D-π-A structure) based on density functional theory. With the computation results of ground state absorption (GSA), excited-state absorption (ESA) and multi-photon absorption (MPA), the optical limiting effect observed in the experiment for the BTH molecule can be well predicted and elucidated by the MPA-ESA mechanism. The analysis of the hole-electron and the electron density differences between two transition states reveal that the main transitions involved in the GSA and ESA of BTH could be recognized as local excitation. Based on these observations, four novel hydrazone derivatives based on the BTH unit with a D1-D-Ai-π-A structure were designed to promote intramolecular charge transfer (ICT). It shows that the ICT effect is well improved by adding the D1 and Ai units. Compared with the original BTH molecule, the main bands of GSA and ESA of D1-D-Ai-π-A molecules are both red-shifted. In addition, GSA, ESA and MPA probabilities are all improved because the obvious charge transfer character results in the transition dipole moment change from localized to delocalized. Accordingly, the optical limiting effect in these hydrazone derivatives is well enhanced. These observations provide guidance for designing novel optical limiting materials based on the hydrazone derivatives.

6.
Foods ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540937

ABSTRACT

Cumin essential oil chitosan nanocapsules (CENPs) were prepared through the ionic gelation method by blending chitosan (CS) with cumin essential oil (CEO) in different proportions (1:0.8, 1:1, 1:2, 1:3, 1:4). Subsequently, these nanocapsules were characterized and evaluated for their antibacterial properties to determine the optimal cumin essential oil encapsulation and antibacterial efficacy. The outcomes demonstrated that the highest encapsulation efficiency of CENPs was 52%, achieved with a 1:3 CS/CEO ratio. At this point, the nanoparticles had the smallest particle size (584.67 nm) and a regular spherical distribution in the emulsion. Moreover, the CENPs could release the encapsulated CEOs slowly, leading to efficient inhibition of E. coli and L. monocytogenes over a relatively extended period (24-36 h) compared to the CS and CEO. This research offers a promising approach for the use of nanocapsules in food preservation.

7.
Animals (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473151

ABSTRACT

Laboratory methods for detecting specific pathogens in oral fluids are widely reported, but there is little research on the oral fluid sampling process itself. In this study, a fluorescent tracer (diluted red food coloring) was used to test the transfer of a target directly from pigs or indirectly from the environment to pen-based oral fluid samples. Pens of ~30, ~60, and ~125 14-week-old pigs (32 pens/size) on commercial swine farms received one of two treatments: (1) pig exposure, i.e., ~3.5 mL of tracer solution sprayed into the mouth of 10% of the pigs in the pen; (2) environmental exposure, i.e., 20 mL of tracer solution was poured on the floor in the center of the pen. Oral fluids collected one day prior to treatment (baseline fluorescence control) and immediately after treatment were tested for fluorescence. Data were evaluated by receiver operating characteristic (ROC) analysis, with Youden's J statistic used to set a threshold. Pretreatment oral fluid samples with fluorescence responses above the ROC threshold were removed from further analysis (7 of 96 samples). Based on the ROC analyses, oral fluid samples from 78 of 89 pens (87.6%), contained red food coloring, including 43 of 47 (91.5%) pens receiving pig exposure and 35 of 42 (83.3%) pens receiving environmental exposure. Thus, oral fluid samples contain both pig-derived and environmental targets. This methodology provides a safe and quantifiable method to evaluate oral fluid sampling vis-à-vis pen behavior, pen size, sampling protocol, and target distribution in the pen.

8.
Cell Res ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491170

ABSTRACT

Atherosclerosis (AS), a leading cause of cardio-cerebrovascular disease worldwide, is driven by the accumulation of lipid contents and chronic inflammation. Traditional strategies primarily focus on lipid reduction to control AS progression, leaving residual inflammatory risks for major adverse cardiovascular events (MACEs). While anti-inflammatory therapies targeting innate immunity have reduced MACEs, many patients continue to face significant risks. Another key component in AS progression is adaptive immunity, but its potential role in preventing AS remains unclear. To investigate this, we conducted a retrospective cohort study on tumor patients with AS plaques. We found that anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) significantly reduces AS plaque size. With multi-omics single-cell analyses, we comprehensively characterized AS plaque-specific PD-1+ T cells, which are activated and pro-inflammatory. We demonstrated that anti-PD-1 mAb, when captured by myeloid-expressed Fc gamma receptors (FcγRs), interacts with PD-1 expressed on T cells. This interaction turns the anti-PD-1 mAb into a substitute PD-1 ligand, suppressing T-cell functions in the PD-1 ligands-deficient context of AS plaques. Further, we conducted a prospective cohort study on tumor patients treated with anti-PD-1 mAb with or without Fc-binding capability. Our analysis shows that anti-PD-1 mAb with Fc-binding capability effectively reduces AS plaque size, while anti-PD-1 mAb without Fc-binding capability does not. Our work suggests that T cell-targeting immunotherapy can be an effective strategy to resolve AS in humans.

9.
Bioorg Chem ; 146: 107259, 2024 May.
Article in English | MEDLINE | ID: mdl-38460335

ABSTRACT

Trisarcglaboids A and B (1 and 2), representing the first example of lindenane sesquiterpenoid trimers repolymerized based on the classical [4 + 2] type dimer, together with known biogenic precursors chlorahololide D (3) and sarcandrolide A (4), were identified as chemical components of the root of Sarcandra glabra. The novel trimeric lindenane sesquiterpenoid skeletons, including their absolute configurations, were characterized using MS, NMR, ECD, and X-ray single crystal diffraction. The proposed Diels-Alder cycloaddition between Δ2(3) of the tiglic acyl group of the classical [4 + 2] type dimer and Δ15(4),5(6) of the third lindenane may serve as the key biogenic step. In addition, compound 1 exerted significant cytotoxicity against five human cancer cell lines with IC50 values ranging from 1 to 7 µM, potentially through blocking Akt phosphorylation and activating the endogenous apoptosis pathway.


Subject(s)
Antineoplastic Agents , Sesquiterpenes , Humans , Polymerization , Antineoplastic Agents/pharmacology , Cycloaddition Reaction , Seeds , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Molecular Structure
10.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38412127

ABSTRACT

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/physiology , Spleen/pathology , Virus Replication , Macrophages/pathology
11.
Adv Mater ; : e2313753, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38403869

ABSTRACT

Controlling and understanding the heat flow at a nanometer scale are challenging, but important for fundamental science and applications. Two-dimensional (2D) layered materials provide perhaps the ultimate solution for meeting these challenges. While there have been reports of low thermal conductivities (several mW m-1 K-1 ) across the 2D heterostructures, phonon-dominant thermal transport remains strong due to the nearly-ideal contact between the layers. Here, this work experimentally explores the heat transport mechanisms by increasing the interlayer distance from perfect contact to a few nanometers and demonstrates that the phonon-dominated thermal conductivity across the WS2 /graphene interface decreases further with the increasing interlayer distance until the air-dominated thermal conductivity increases again. This work finds that the resulting tradeoff of the two heat conduction mechanisms leads to the existence of a minimum thermal conductivity at 2.11 nm of 1.41 × 10-5  W m-1 K-1 , which is two thousandths of the smallest value reported previously. This work provides an effective methodology for engineering thermal insulation structures and understanding heat transport at the ultimate small scales.

12.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338416

ABSTRACT

Protein tyrosine phosphatases (PTPs) are ubiquitous in living organisms and are promising drug targets for cancer, diabetes/obesity, and autoimmune disorders. In this study, a histone deacetylase inhibitor called suberoylanilide hydroxamic acid (SAHA) was added to a culture of marine fungi (Aspergillus sydowii DL1045) to identify potential drug candidates related to PTP inhibition. Then, the profile of the induced metabolites was characterized using an integrated metabolomics strategy. In total, 46% of the total SMs were regulated secondary metabolites (SMs), among which 20 newly biosynthesized metabolites (10% of the total SMs) were identified only in chemical epigenetic regulation (CER) broth. One was identified as a novel compound, and fourteen compounds were identified from Aspergillus sydowii first. SAHA derivatives were also biotransformed by A. sydowii DL1045, and five of these derivatives were identified. Based on the bioassay, some of the newly synthesized metabolites exhibited inhibitory effects on PTPs. The novel compound sydowimide A (A11) inhibited Src homology region 2 domain-containing phosphatase-1 (SHP1), T-cell protein tyrosine phosphatase (TCPTP) and leukocyte common antigen (CD45), with IC50 values of 1.5, 2.4 and 18.83 µM, respectively. Diorcinol (A3) displayed the strongest inhibitory effect on SHP1, with an IC50 value of 0.96 µM. The structure-activity relationship analysis and docking studies of A3 analogs indicated that the substitution of the carboxyl group reduced the activity of A3. Research has demonstrated that CER positively impacts changes in the secondary metabolic patterns of A. sydowii DL1045. The compounds produced through this approach will provide valuable insights for the creation and advancement of novel drug candidates related to PTP inhibition.


Subject(s)
Aspergillus , Epigenesis, Genetic , Aspergillus/chemistry , Protein Tyrosine Phosphatases , Vorinostat/pharmacology
13.
Aging Clin Exp Res ; 36(1): 17, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294586

ABSTRACT

AIM: To evaluate the performances of the various estimated glomerular filtration rate (eGFR) equations of the Chronic Kidney Disease Epidemiology Collaboration, the Berlin Initiative Study (BIS), and the Full Age Spectrum (FAS) in older Chinese. METHODS: This study enrolled Chinese adults aged ≥ 65 years who underwent GFR measurements (via 99Tcm-DTPA renal dynamic imaging) in our hospital from 2011 to 2022. Using the measured glomerular filtration rate (mGFR) as the reference, we derived the bias, precision, accuracy, and consistency of each equation. RESULTS: We enrolled 519 participants, comprising 155 with mGFR ≥ 60 mL/min/1.73 m2 and 364 with mGFR < 60 mL/min/1.73 m2. In the total patients, the BIS equation based on creatinine and cystatin C (BIScr-cys) exhibited the lowest bias [median (95% confidence interval): 1.61 (0.77-2.18)], highest precision [interquartile range 11.82 (10.32-13.70)], highest accuracy (P30: 81.12%), and best consistency (95% limit of agreement: 101.5 mL/min/1.73 m2). In the mGFR ≥ 60 mL/min/1.73 m2 subgroup, the BIScr-cys and FAS equation based on creatinine and cystatin C (FAScr-cys) performed better than the other equations; in the mGFR < 60 mL/min/1.73 m2 subgroup, all equations exhibited relatively large deviations from the mGFR. Of all eight equations, the BIScr-cys performed the best. CONCLUSIONS: Although no equation was fully accurate in the mGFR < 60 mL/min/1.73 m2 subgroup, the BIScr-cys (of the eight equations) assessed the eGFRs of the entire population best. A new equation is urgently required for older Chinese and even East Asians, especially those with moderate-to-severe renal insufficiency.


Subject(s)
Cystatin C , Glomerular Filtration Rate , Aged , Humans , China , Creatinine , East Asian People
14.
Toxicol Appl Pharmacol ; 482: 116788, 2024 01.
Article in English | MEDLINE | ID: mdl-38086441

ABSTRACT

Environmental chemicals, such as plasticizers, have been linked to increased rates of obesity, according to epidemiological studies. Acetyl triethyl citrate (ATEC) is a plasticizer that is commonly utilized in pharmaceutical products and food packaging as a non-phthalate alternative. Due to its direct contact with the human body and high leakage rate from the polymers, assessment of the potential risk of ATEC exposure at environmentally relevant low doses to human health is needed. Male C57BL/6 J mice were fed diets containing ATEC at doses of either 0.1 or 10 µg/kg per day in a period of 12 weeks to mimic the real exposure environment. The findings suggest that in C57BL/6 J mice, ATEC exposure resulted in increased body weight gain, body fat percentage, and benign hepatocytes, as well as adipocyte size. Consistent with in vivo models, ATEC treatment obviously stimulated the increase of intracellular lipid load in both mouse and human hepatocytes. Mechanically, ATEC induced the transcriptional expression of genes involved in de novo lipogenesis and lipid uptake. Using both enzyme inhibitor and small interfering RNA (siRNA) transfection, we found that stearoyl-coenzyme A desaturase 1 (SCD1) played a significant role in ATEC-induced intracellular lipid accumulation. This study for the first time provided initial evidence suggesting the obesogenic and fatty liver-inducing effect of ATEC at low doses near human exposure levels, and ATEC might be a potential environmental obesogen and its effect on human health need to be further evaluated.


Subject(s)
Citrates , Lipogenesis , Plasticizers , Male , Mice , Humans , Animals , Plasticizers/toxicity , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/metabolism , Lipids , Liver , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
15.
Nat Prod Rep ; 41(1): 25-58, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37791885

ABSTRACT

Covering: 1925 to July 2023Among the sesquiterpenoids with rich structural diversity and potential bioactivities, lindenane sesquiterpenoids (LSs) possess a characteristic cis, trans-3,5,6-carbocyclic skeleton and mainly exist as monomers and diverse oligomers in plants from the Lindera genus and Chloranthaceae family. Since the first identification of lindeneol from Lindera strychnifolia in 1925, 354 natural LSs and their oligomers with anti-inflammatory, antitumor, and anti-infective activities have been discovered. Structurally, two-thirds of LSs exist as oligomers with interesting skeletons through diverse polymeric patterns, especially Diels-Alder [4 + 2] cycloaddition. Fascinated by their diverse bioactivities and intriguing polycyclic architectures, synthetic chemists have engaged in the total synthesis of natural LSs in recent decades. In this review, the research achievements related to LSs from 1925 to July of 2023 are systematically and comprehensively summarized, focusing on the classification of their structures, chemical synthesis, and bioactivities, which will be helpful for further research on LSs and their oligomers.


Subject(s)
Anti-Infective Agents , Sesquiterpenes , Sesquiterpenes/chemistry , Anti-Infective Agents/chemistry , Cycloaddition Reaction , Anti-Inflammatory Agents
16.
Bioorg Chem ; 143: 107017, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056388

ABSTRACT

Eleven new amides, four racemic pairs of (±)-chlorahupetamides A, B, D, E (1, 2, 4, 5) and chlorahupetamides C, F, G (3, 6, 7), have been isolated from Chloranthus henryi var. hupehensis. Compounds 1-3 are the first naturally occurring dimers via an unprecedented [2 + 2] cycloaddition derived from two dissimilar cinnamic acid amides, while compounds 4 and 5 represent the first examples of lignanamides in Chloranthus; together with two new hydroxycinnamic acid amide monomers (6-7), these compounds were obtained. Their structures were characterized by nuclear magnetic resonance (NMR), electronic circular dichroism (ECD), and X-ray diffraction analysis. Meanwhile, an LPS-induced BV-2 cell inflammatory model was used to determine the potential anti-inflammatory activity of all the isolated compounds. Intriguingly, compound -1 treatment showed a much greater inhibition of TNF-α expression with an EC50 value of 1.80 µM, while compound + 1 had more advantages in reducing IL-1ß expression with an EC50 value of 19.93 µM. Moreover, compounds + 1 and -1 could significantly suppress inflammation and inhibit the Akt signaling pathway by decreasing the phosphorylated protein levels of Akt.


Subject(s)
Anti-Inflammatory Agents , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Molecular Structure
17.
J Mass Spectrom ; 59(1): e4990, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146124

ABSTRACT

Decarboxylation is known to be the major fragmentation pathway for the deprotonated carboxylic acids in collision-induced dissociation (CID). However, in the CID mass spectrum of deprotonated benzoic acid (m/z 121) recorded on a Q-orbitrap mass spectrometer, the dominant peak was found to be m/z 93 instead of the anticipated m/z 77. Based on theoretical calculations, 18 O-isotope labeling and MS3 experiments, we demonstrated that the fragmentation of benzoate anion begins with decarboxylation, but the initial phenide anion (m/z 77) can react with trace O2 in the mass analyzer to produce phenolate anion (m/z 93) and other oxygen-containing ions. Thus oxygen adducts should be considered when annotating the MS/MS spectra of benzoic acids.

18.
World J Gastroenterol ; 29(43): 5804-5817, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38074914

ABSTRACT

BACKGROUND: Surgical resection is the primary treatment for hepatocellular carcinoma (HCC). However, studies indicate that nearly 70% of patients experience HCC recurrence within five years following hepatectomy. The earlier the recurrence, the worse the prognosis. Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data, which are lagging. Hence, developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis. AIM: To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC. METHODS: The demographic and clinical data of 371 HCC patients were collected for this retrospective study. These data were randomly divided into training and test sets at a ratio of 8:2. The training set was analyzed, and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models. Each model was evaluated, and the best-performing model was selected for interpreting the importance of each variable. Finally, an online calculator based on the model was generated for daily clinical practice. RESULTS: Following machine learning analysis, eight key feature variables (age, intratumoral arteries, alpha-fetoprotein, pre-operative blood glucose, number of tumors, glucose-to-lymphocyte ratio, liver cirrhosis, and pre-operative platelets) were selected to construct six different prediction models. The XGBoost model outperformed other models, with the area under the receiver operating characteristic curve in the training, validation, and test datasets being 0.993 (95% confidence interval: 0.982-1.000), 0.734 (0.601-0.867), and 0.706 (0.585-0.827), respectively. Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value. CONCLUSION: The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence. This model may guide surgical strategies and postoperative individualized medicine.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Retrospective Studies , Risk Factors , Machine Learning
19.
World J Hepatol ; 15(11): 1250-1252, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38075007

ABSTRACT

This letter to the editor relates to the study entitled "Non-invasive model for predicting high-risk esophageal varices based on liver and spleen stiffness". Acute bleeding caused by esophageal varices is a life-threatening complication in patients with liver cirrhosis. Due to the discomfort, contraindications, and associated complications of upper gastrointestinal endoscopy screening, it is crucial to identify an imaging-based non-invasive model for predicting high-risk esophageal varices in patients with cirrhosis.

20.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37972388

ABSTRACT

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...